1. Regulation of solution treatment to improve the interfacial bonding quality and mechanical properties of 7B52 laminated aluminum alloy,Journal of Alloys and Compounds. 2025, 1014: 178659. (通信作者) 2. 低钪含量Al-Zn-Mg-Cu-Zr铝合金的组织性能研究[J], 稀有金属材料与工程2025. 52(3)(通信作者) 3. Unveiling the High Ductility-Strength Mechanism Induced by Honeycomb Dislocations and Dispersed Vacancies in 7A52- DCI4 Aluminum Alloy, Journal of Materials Science & Technology. 2025,229:196-202(通信作者) 4. Influence of pre-stretching at ambient and cryogenic temperatures on dislocation configuration, precipitation behaviour, and mechanical properties of 2195 Al-Cu-Li alloy. Journal of Materials Research and Technology, 2023, 22: 2983-2995.(第一作者) 5. Influence of different rolling processes on microstructure and strength of the Al–Cu–Li alloy AA2195. Progress in Natural Science: Materials International, 2022, 32 (1): 87-95. (第一作者) 6. Hard-soft-hard layered structure for enhanced mechanical properties in corrugated rolled AZ31 magnesium alloy sheets, Journal of Materials Research and Technology. 2025, 35: 3205-3216. (共同作者) 7. Effects of Ga on the corrosion behaviors of severe plastic deformation strengthened biodegradable Mg-2Zn-xGa alloys, Corrosion Science, 2025, 113265. (共同作者) 8. A strategy to synergistically enhance the interfacial bonding quality and strength-ductility of laminated aluminum alloy. Journal of Materials Research and Technology, 2025. (共同作者) 9. The ordered orientation gradient “sandwich” texture induced high strength-ductility in AZ31 magnesium alloy, Scripta Materialia. 2024, 253: 116296.(共同作者) 10. The effects of substitution of yttrium for Ce-rich mischmetal on the mechanical properties and thermal conductivity of Mg–4Al–4Zn–4RE alloy, Materials Characterization. 2024, 212: 113959.(共同作者) 11. Investigation on cryogenic TRIP/TWIP effects in metastable β-Ti alloy with complex deformation behavior, Materials Science and Engineering: A. 2024, 897: 146371.(共同作者) 12. Effect of alloying elements on microstructure, mechanical and damping properties of Cr-Mn-Fe-V-Cu high-entropy alloys.Journal of Materials Science & Technology. 2018, 34 (11): 2014-2021. (共同作者) 13. Influencing mechanisms of heat treatments on microstructure and comprehensive properties of Al–Zn–Mg–Cu alloy formed by spray forming. Journal of Materials Research and Technology. 2020, 9(3): 6850-6858. (共同作者) 14. Effects of Solidification Pressure and Heat Treatment on the Microstructure and Micro-Hardness of AlSi9CuMg Alloy. Materials. 2019, 12(14): 2229. (共同作者) 15. Effect of thermal cycles on the laser beam welded joint of AA2060 alloys. Journal of Materials Research. 2018, 33: 3439–3448. (共同作者) 16. The relationship between crosslinking structure and silk fibroin scaffold performance for soft tissue engineering. International Journal of Biological Macromolecules. 2021, 182: 1268-1277. (共同作者) 17. Controlled Cryogelation and Catalytic Cross-Linking Yields Highly Elastic and Robust Silk Fibroin Scaffolds. ACS Biomaterials Science and Engineering. 2020, 6, 4512−4522. (共同作者) 18. 时效前的预变形对喷射成形2195铝锂合金组织与性能的影响[J]. 中国有色金属学报,2022,32(1):15-26. (共同作者) 19. Serrated flow behavior of GH536 superalloy under different loading rates at room temperature. Rare Met. 2018.(共同作者) 20. High temperature behavior of a diffusion barrier coating evolved from ZrO2 precursor layer. Surface & Coatings Technology. 2019, 357: 444–392. (共同作者) 21. Effects of Cryogenic Treatment on the Microstructure and Residual Stress of 7075 Aluminum Alloy. 2018. Metals, 8 (4): 273. (共同作者) 22. Evolution of microstructure and microhardness of the weld simulated heat-affected zone of Ti-22Al-25Nb (at.%) alloy with continuous cooling rate. Journal of Alloys and Compounds. 2018, 744: 487-492. (共同作者) |