l 论文 (1)Zhong, C.; Zhang, J.; Wang, Y.; Long, Y.; Zhu, P.; Liu, J.; Hu, K.; Chen, J.; Lin, X. High‐performance diffusion model for inverse design of high Tc superconductors with effective doping and accurate stoichiometry. InfoMat 2024, e12519.(IF=22.5,Cover Article) (2) Zhong, C.; Zhang, J.; Lu, X.; Zhang, K.; Liu, J.; Hu, K.; Chen, J.; Lin, X. Deep Generative Model for Inverse Design of High-Temperature Superconductor Compositions with Predicted Tc > 77 K. ACS Appl. Mater. Interfaces 2023, 15 (25), 30029-30038. (IF=9.5) (3)Zhong, C.; Zhang, J.; Hu, K; X Lin, Enhancing Superconductor Critical Temperature Prediction: A Novel Machine Learning Approach Integrating Dopant Recognition, ACS Appl. Mater. Interfaces 2024,16(26), 60472-60481. (IF=9.5) (4)Zhong, C.; Dan, Y.; Zhang, P.; Wang, J. Self-assembly Urchin-like Au-NSs Arrays and Application as Surface-enhanced Raman Scattering Substrates. Materials Letters 2020, 234, 125-128. (IF=3.0) (5) Zhong, C.; Wang, L.; Lu, X.; Zhang, K.; Hu, K; X Lin, Simulated Gradient Drift in Diffusion Model for Designing Superconductors over 140 K, Materials Horizon. (IF=10, under revision) (6)Wang Y#.; Zhong, C#.; Hu, K.; Lin, X. High-Performance Stacking Ensemble Learning for Thermoelectric Figure-of-Merit Prediction, Materials & Design 2025, 249, 113552 ( IF=7.6, 共同一作) (6)Long, Y#.; Zhong, C#.; Zhang, J.; Lu, X.; Zhang, K.; Liu, J.; Hu, K; X Lin, Inverse Design of High-performance Thermoelectric Materials via Generative Model Combined with Experimental Verification, ACS Appl. Mater. Interfaces 2025, 17(13), 19856–19867 ( IF=9.5, 共同一作) (7)Liu H#.; Yang A#; Zhong, C#.; Zhang, J.; Lu, X.; Zhang, K.; Liu, J.; Hu, K; X Lin, Integration of Microstructural Image Data into Machine Learning Models for Advancing High- Performance Perovskite Solar Cell Design, ACS Energy Letters, 2025(10),1884-1891 ( IF=20.8, 共同一作) (8)Zhang, J.; Zhong, C.; Lu, X.; Hu, K.; Lin, X. Crystal Structure Graph Neural Networks for。High-performance Superconducting Critical Temperature Prediction. Science China Materials 2024, (IF=8.1) (9) Zhang, J.; Zhang, K.; Xu, S.; Li, Y.; Zhong, C.; Zhao, M.; Qiu, H.-J.; Qin, M.; Xiang, X.-D.; Hu, K. An Integrated Machine Learning Model for Accurate and Robust Prediction of Superconducting Critical Temperature. Journal of Energy Chemistry 2023, 78, 232-239. (IF=13.1) 专利 (1)林熹,钟承权,刘家凯,张靖梓,陶求华,王越琳,胡凯龙,杨安泰,姚克欣,基于钙钛矿太阳能电池SEM图片的光电性能预测方法 (2)林熹,钟承权,刘家凯,张靖梓,陶求华,王越琳,胡凯龙,杨安泰,姚克欣,基于梯度引导的超导体逆向设计方法及系统 (3)王军,钟承权,单雅倩,宁爱凤,一种铁纳米点阵辅助制备自组装杨梅状金 SRES 衬底的方法 (4)刘家凯,林熹,杨安泰,张靖梓,钟承权,刘昊天,胡凯龙,基于生成模型的钙钛矿组分分析装置 (5)刘家凯,林熹,杨安泰,张靖梓,钟承权,刘昊天,胡凯龙,一种钙钛矿钝化剂钝化策略评估方法、装置、设备及介质 (6)刘家凯,林熹,杨安泰,张靖梓,钟承权,刘昊天,胡凯龙,基于机器学习的钙钛矿太阳能电池设计方法及装置
|